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Abstract. The semiclassical cluster model for the propagation of shock waves in solids is 
applied to a linear molecular lattice witth Morse interaction potentials. The exact quantum 
eigenstates for a cluster are first found and the interactions between neighbouring clusters 
are then considered as time-dependent perturbations which induce transitions among the 
cluster eigenstates. Calculationsusing thesemiclassical cluster model qualitatively agree with 
classical calculations, although quantitative differences do arise in the atomiccoordinates and 
molecular energies because of the anharmonity of the potentials. 

1. Introduction 

For the past few decades, the propagation of shock waves in condensed matter has been 
extensively investigated [ 1-31 with a variety of experimental techniques. However, 
theoretical studies are very difficult due to the large number of degrees of freedom. Most 
theoretical investigations have been based upon numerical integration of the classical 
equations of motion [4-22] for harmonic or anharmonic l ~ ,  2D, or 3~ atomic or molecular 
lattices. A few approximate quantal studies have been reported [23-271, some of which 
make restrictive approximations, including the propagation of Gaussian wavepackets. 

Recently, Marston and Wyatt developed a semiclassical method for investigating 
shock wave propagation in molecular lattices [28]. In the cluster model, a group of 
molecules are selected for investigation using quantum mechanical methods. The 
dynamics of molecules within the cluster are found by integrating quantum mechanical 
equations of motion for the state amplitudes, after a time dependent perturbation V(t) 
is ‘turned on.’ This perturbation allows the shock wave to enter through one edge of the 
cluster and then leave, at a later time, through the opposite edge. 

So far, the cluster model has been applied only to harmonic or cubic anharmonic 
linear diatomic lattices. The cluster was defined to include two diatomic molecules and 
all four degrees of freedom were treated quantum mechanically. 

In this study, the cluster model is applied to a linear diatomic lattice with Morse 
interaction potentials. The whole lattice is partitioned into a series of clusters and the 
quantal solutions for each cluster are found. Interactions between different clusters are 
considered as time-dependent perturbations. Translation of the centre-of-mass of each 
cluster is treated classically, while the intermolecular and intramolecular vibrational 
degrees of freedom are treated quantum mechanically. Particular emphasis is placed 
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Table 1. Parameters in Morse potentialst 

m = 25 538.58 amu 
rM = 2.071 An D, 0.014 EH 

DM = 0.358 8235 EH 

rc = 6.213 an 
r ,  = 4.142 a() 

D, = 0.036 EH 
A = 0.6 EH 

pM = pc = pn = 1.433 7845 a i '  ( Y =  L o a n '  

+ EH = Hartree energy unit, a,, = atomic unit of length 

upon computation of the coordinates of the atoms in each cluster, the total energy of 
the cluster, and the energy for each molecule within the cluster. 

2. Classical trajectory calculations 

In this study, we consider a linear lattice of forty atoms which form twenty diatomic 
molecules. All atoms in the chain are of equal mass, that of a nitrogen atom, and the 
intramolecular potential is chosen as that of diatomic nitrogen for which a Morse 
potential has been used: V,(Y) = DM{l - exp[-p,(r - YM)]}' - D M ,  where r is the 
interatomic distance. The Morse potential parameters DM, pM and rM are given in table 
1. We separate the interaction potential between two molecules into two parts: one is a 
pairwise potential between neighbour atoms of the two neighbour molecules; another 
is an interaction potential between the centre of mass of the two molecules. Both 
potentials are chosen as Morse potentials. The Morse parameters D,, p, and Y, are for 
the pairwise nearest-neighbour potential and D,, p, and r, refer to the centre-of-mass 
component. 

In order to initiate the shock wave, a ballistic particle (impact atom) with mass equal 
to one of the chain atoms interacts with the chain through an exponential repulsive 
potential. The interaction potential between the impact atom and the first atom in the 
chain is given by: 

Vl,,(ql, q o )  = A e-"(q1-40) (1) 

where A and (Y are also given in table 1. As a result, the potential for the whole system 
is given by 

20 19 

v= vM(q2~ - 421-1) + vn(q2]+1 - 421) 
]=1  I =  1 

10 

+ E v c [ i ( 4 2 1 + 2  + q21+1  - 421 - 421-111 + Vint(q1,qo). ( 2 )  
]=1  

Here, {ql} are coordinates of the ballistic particle and the atoms of the chain, V, are the 
Morse potentials for diatomic molecules, V, are the pairwise Morse potentials between 
neighbouring molecules, V, are the Morse potentials between the centres-of-mass of 
two molecules and VI,, is the potential between impact particle and the first atom in the 
chain. 
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Given this potential, Hamilton’s equations were integrated numerically for specified 
initial conditions. Different initial conditions were used to initiate the trajectory cal- 
culations and the results were very close. As a result, the following simple set of initial 
conditions was used. 

All atoms are initially at equilibrium, and the impact atom starts at a large distance 
from the first atom of the chain. The initial momenta can be calculated as following: 

(P2 -  PI)^/^, = hW(n + h) - ( h 2 W 2 / 4 D ~ ) ( n  + i)2 
n = 0 ,  ,U = m / 2 ,  o = ( p M / 2 7 c ) v m .  

Pi = (- l)’[!@ho( 1 - h w / 8 D ~ ) ]  1’2. 

(3) 
Here, P1 and P2 are the momenta for two atoms in the molecule and we assume at t = 0 
that P1 = - P2. This leads to the initial momenta: 

(4) 
In order to compare the classical and semiclassical results, for each cluster we define 

the origin of coordinates at the centre of mass of the cluster at the initial time and the 
trajectories of the four atoms of the cluster, q l ,  q2 ,  q3, q4, are then computed. The mode 
energy of each diatomic molecule is calculated: 

Emode = (pz - P I ) ~ / ~ , U  -t v ~ ( q 2  - 41) ( 5 )  
where, as before, P ,  and P 2  are the momenta of the two atoms in the molecule and VM 
is the Morse potential for the molecule. The classical energy of the cluster is defined by: 

3. Formulation of cluster model 

After selecting a segment of the lattice which contains a small number of molecules, we 
partition the total time-dependent cluster Hamiltonian 

H = H: + V , ( t )  = ( T +  V,) + V , ( t )  (7) 
where H: is the time-independent cluster Hamiltonian, and V l ( t )  couples molecules 
within the cluster to those in neighbouring clusters. We then solve for the cluster 
eigenstates 

H ! v i  = E i v i  i =  1 , 2 . .  . N  (8) 
and use these as a basis for expanding the time-dependent wavefunction for the perturbed 
cluster 

N 

Y(t) = 2 Cj(t)Yj.  (9) 
i= 1 

The amplitudes ci(t) are solutions to the system of first-order coupled differential 
equations 

As an example, we will now consider a cluster containing two diatomic molecules, 
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in which all atoms have the same mass, m. In terms of Cartesian coordinates {si}, the 
Jacobi coordinates are 

Tai-Guang Wei and R E Wyatt 

where R is the centre-of-mass coordinate, p is the intermolecular displacement, and 
ri are molecular vibrational coordinates for molecules labeled 1 and 2. The cluster 
Hamiltonian operator is then 

(12) 
I a 2  1 a 2  

where M = 4m, pI = p2  = m/2, and p = m. We are assuming that the cluster potential- 
before the shock wave enters the cluster-is independent of the centre-of-mass coor- 
dinate. In addition, we will assume that the motion of the centre of mass, for the 
perturbed cluster, can be treated classically. 

As a result of these restrictions, the stationary states of the cluster are determined 
by the Schrodinger equation, 

The potential is now decomposed into 

In order to solve (13), we will expand the wavefunction in a direct product of Morse 
oscillator eigenstates, 

where the eigenvectors di are found by diagonalizing the matrix representation of the 
cluster Hamiltonian in the Morse oscillator product basis. 

4. Time-dependent perturbation potentials 

If the Cartesian coordinates of the four atoms in a cluster are denoted qi, q i+l ,  qi+* ,  and 
qi+3, then the Jacobi coordinates ri, ri+ 1, pi, and Ri are easily computed. The Cartesian 
coordinates of the two atoms in ‘front’ of the cluster are qi-2 and q j p l ,  while qii4 
and qi+5 denote the coordinates of the two atoms ‘behind’ the cluster. From classical 
mechanics applied to the shocked lattice, we find the time dependence of the atoms in 
the two neighbouringclusters, ~ 7 ~ - ~ ( t ) ,  q j p I ( t ) ,  qj-4(t) ,  andqi+,(t). The time-dependence 
of these coordinates, in turn, produces time-dependence in the four intercluster poten- 
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tials involving the two nearest neighbour distances piPl(t) and pi- l ( t) .  The total time 
dependent perturbation is then the sum of four terms 

V(t) = Vn(qi - qi-l(t)) + Vc(pi-l(t>) + v n ( q i + 4 ( t )  - q i + 3 )  + V c ( ~ i + l ( t ) ) .  (16) 
For the first cluster, the first two terms are replaced by the time-dependent interaction 

with the impact atom, 

Vint(f) = A exp[-m(q1 - qO(t))I. (17) 

5. Semiclassical calculations and analysis 

In order to apply the semiclassical formulation, several steps must be followed: 

(i) The time-independent cluster eigenvectors {vi} and eigenvalues {E;} are cal- 
culated by diagonalizing the cluster Hamiltonian in a direct product basis. 

(ii) The time-dependent cluster perturbation V,(t) is obtained from (16) by inte- 
grating the classical equations of motion. 

(iii) The close-coupling equations, equation (lo), are numerically integrated for 
specific initial conditions. In these studies, we used c l ( 0 )  = 1, ~ ~ ( 0 )  = 0 ,  i > 1, meaning 
that the cluster starts in the ground state. 

The result of these steps is the set of state amplitudes {c;(t)},  at a set of discrete times, to, 
t l , .  . . t N .  

The quantum expectation values of the coordinates and mode energies are then 
calculated: 

where hk is the Hamiltonian of the Morse oscillator molecule 
The total energy of the cluster is 

( E )  = ( ~ ( t )  1 H: I v(t)) + Tcm = 2 c:(t>c, ( t > ~ i  I H! I +  cm 2 I ci(t> 1 2 ~ ,  +  cm 
1.1 I 

(20) 
where T,, is the kinetic energy of the centre of mass of the cluster, which is calculated 
from the classical results. 

6. Results and discussion 

In the atom-lattice collision studied here, the change in kinetic energy of the impact 
atom was A E  = (0.376 - 0. 140)EH = 6.41 eV. The fundamental vibrational spacing for 
the molecular bond was fiwM = 0.0107EH = 0.292 eV. As a result, a total of AE/f iw ,  = 
21.93 molecular quanta were deposited in the lattice, which amounts to an average of 
21.93/20 = 1.097 quanta per lattice molecule. 
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CLUSTER 1 I 
I 

In1 CLusm s 

n-t g o -  
-- ---- 

q 2  I - 

N I' . /  
d ' 0 . 0  2 . 3  4 . 7  7 . 0  9 . 3  1 1 . 7  1 4 . 0  

T I M E  

Figure 1. Coordinatesof the four atoms in the first 
cluster. Solid lines are classical results and dashed 
lines are semiclassical results. Coordinates are in 
atomic units (ao) and time is in molecular periods. 

' 0 . 0  2 . 3  4 . 7  7 . 0  9 . 3  1 1 . 7  14 

T I M E  

Figure2. Coordinates of the four atoms in the fifth 
cluster. Solid lines are classical results and dashed 
lines are semiclassical results. Coordinates are in 
atomic units (ao) and time is in molecular periods. 

In equation (15), 360 product basis functions were used, with 6 functions for each of 
the two molecules, and 10 for the weaker intermolecular bond. Then, the lowest 120 of 
the cluster eigenfunctions were used in equations (9), (10) for the dynamical evolution. 
To check for convergence,, the primitive basis size in equation (15) was varied, as was 
the number of functions N in equations (9), (10). The results shown later in figures 1-5 
were not sensitive to these changes. Finally, the Bulirsch-Stoer integrator with Rich- 
ardson extrapolation was used for the quantum equation, while the variable-step vari- 
able-order Adams algorithm was used to solve the classical equations of motion. 

In figure 1, both classical and semiclassical coordinates are plotted for the four atoms 
in the first cluster. The origin is at the centre of mass of the cluster at time t = 0. 
The time is in units of molecular periods, T =  2n/w = O.O14ps, where o = 
(PM/2n)(2DM/p)''*. In figure 2, similar results are given for cluster 5. From these 
two figures, it is apparent that before the shock wave enters the cluster, there is close 
agreement between the semiclassical and classical results. However, after the shock 
wave enters the cluster, the agreement is not as close, because of the anharmonicity of 
the Morse potentials. By comparing the times at which molecules in clusters 1 and 5 
are displaced by the shock wave, it is possible to estimate the speed of propagation 
of the shock wave. This speed is approximately 3.8 X 106cm-'s, which is near 
the value achieved in various classical simulations: 5 X 105-1 x lo6 cm-'s [14-161, 
2 X 106cm-'s [7], 1.5 x 106-2.8 x lo6 cm-'s [19,21]. By contrast, the speed of 
sound in solids at room temperature is usually in the range 0.1 X 106-0.5 x lo6 cm-' s.  

Previous semiclassical studies of shock wave propagation in a purely harmonic lattice 
showed excellent agreement with the classical results at all times [28]. This is in accord 
with Ehrenfest's theorem, which states that the time evolution of quantum expectation 
valves is isomorphic to the corresponding classical results for harmonic potentials. 

Figure 3 shows the total energy for each of the first nine clusters from the classical 
dynamics calculations. Figure 4 shows the analogous quantity for the semiclassical 
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1 

T I M E  
Figure 4. The semiclassical calculated total energy 
of each cluster. The numbers on the curves ident- 
ify the clusters. Energies are in units of molecular 
quanta and time is in molecular periods. 

Figure 3. The classical calculated total energies of 
each cluster. The numbers on the curves identify 
the clusters. Energies are in units of molecular 
quanta and time is in molecular periods. 

U! 

t N  

w o  

U -  
K 

z -  
Lu 

I. g G  
2 :  
0 

N 

0 

0 

0 

T I M E  
Figure 5. The semiclassical calculated molecu!ar 
mode energies for the first, third and fifth clusters. 
The numbers on the curves identify the diatomic 
molecules. Energies are in units of molecular 
quanta and time is in molecular periods. 

calculations. All energies in these figures are excitation energies in units of molecular 
quanta, relative to the ground state energy, ( (E( t ) )  - Eground)hwM. Qualitatively, the 
results are similar, although classical mechanics predicts energies 25-30% higher than 
the semiclassical calculations. 

In both sets of calculations, we observe very clearly the propagation of the shock 
wave from cluster to cluster, with some energy retained by each cluster, at least during 
the 12-period time scale shown in the figures. 

Figure 5 shows the energy in each molecule (again relative to the ground state) for 
the first, third, and fifth clusters. Note that each molecule received about one vibrational 
quantum in less than one vibrational period. The rate of energy transfer is thus 0.292 eV/ 
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0.014 ps = 21 eV/ps. The sum of the energies of the two molecules in each cluster is 
considerably less than the total energy of each cluster (figure 4); the ‘excess’ energy goes 
into molecular relative motion and centre-of-mass motion. 

A shock wave launched on one side of the lattice may spa11 a group of atoms off the 
opposite side [4]. This effect was observed under the conditions of this study. 

From these classical and semiclassical calculations, we obtain the following con- 
clusions about shock wave propagation in a linear molecular lattice with Morse inter- 
action potentials. Because the shock wave is initiated when the ballistic particle strikes 
the end atom of cluster number one, energy is initially transferred only to the first 
molecule. However, the bond in this molecule is relatively strong, so the molecule tends 
to move as a unit, acquiring translational energy as it begins to push the second molecule 
in the same cluster. Some energy is partitioned into relative motion between these two 
molecules, some goes into the translational energy of the centre of mass of the cluster 
and the remainder excites internal motions of the second molecule. Continuing in this 
way, the energy will transfer from cluster to cluster. For a weak shock wave, anharmonic 
effects are small and classical mechanics is a good approximation [28]. However, for 
stronger shock waves, anharmonic effects cause differences between the classical and 
semiclassical results. 

The cluster model as formulated here cannot be used to describe dissociation of 
molecules within the cluster. However, we are presently extending the model to allow for 
this case. In addition, it will be possible to do classical calculations on three-dimensional 
anharmonic lattices, followed by semiclassical calculations on a few impoprtant clusters. 
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